"The [4DMedical] analysis is unique because it can provide the spatial and functional information we need to optimize treatment for each patient."

Kenneth Wong, MD,
Assistant Clinical Professor, Children’s Hospital Los Angeles
Arthur Olch, PhD,
Professor of Clinical Radiation Oncology, USC Keck School of Medicine

4DMedical's patented XV Technology™ is four-dimensional lung function imaging analysis that uniquely and non-invasively measures lung function in real-time within the breathing lungs. This enables highly detailed maps of lung ventilation patterns and airflow, which enables pinpoint identification of deficits in ventilation.


XV Technology provides, for the first time in medical history, the capacity to simply, safely and effectively view lung function in fine detail. Consequently, there is a tremendous opportunity for quantification and management of debilitating respiratory disease conditions ranging from asthma to cancer with unprecedented insight and precision. The applications for 4DMedical’s technology are essentially unlimited, from respiratory disease quantification and management to pharmaceutical research. The end result: improving millions of lives through earlier and more precise monitoring of chronic and acute respiratory conditions.


The 4DMedical image analysis technology analyzes scanned images acquired from fluoroscopy imaging equipment already installed and available in hospitals and imaging suites.  The images are run through 4DxV’s unique, proven algorithms to reconstruct the flow of air throughout all airways in the lung.

The business context

This software-as-a-service business model vastly increases the potential scope of application and customer base, as well as accelerates take-up of the technology. It’s an approach that provides rapid scalability.

Globally Patented

4DMedical has patent protection across all global markets.

The Human Lungs

The lungs make up an essential human organ responsible for vital gas exchange, transporting atmospheric oxygen into the bloodstream, and releasing carbon dioxide from the bloodstream back into the atmosphere. The air is drawn into the body through the nose and mouth, travelling through the body’s air channels until it reaches the tiny gas exchange end points (called alveoli) embedded deep within the lung structure.

The trachea (windpipe) divides into two main bronchi, the left and the right, at the entrance to the lungs. The bronchi then subdivide into smaller bronchioles and continue subdividing until reaching the alveoli, which are small air sacs grouped into bunches and wrapped tightly in blood vessels. This is where the gas exchange occurs.

Mammalian lungs are spongy and soft in texture, and are located in two cavities on either side of the heart, directly above the thoracic diaphragm. Each lung is separated into lobes by fissures, and each lobe is encased by a pleural cavity which is a self-lubricating membrane that helps the lungs slide and function effortlessly during the action of breathing.

The lung region is very moist and warm, a perfect breeding ground for bacteria. Most illnesses of the lung relate to bacterial and viral infection, which often lends itself to inflammation of the lung tissue (known as pneumonia), or inflammation of the pleura (known as pleurisy). The lungs’ natural defense to foreign agent infection is through mucociliary clearance. The tissue lining the airways produces sticky mucus which traps foreign bodies (like dust or bacteria) in it. The body then moves the mucus up and out of the lungs through a coordinated rhythmic beating action of the hair-like cilia that lines the airways.

Global Lung Disease Profile

Respiratory disease is a medical term for all conditions affecting the organs and tissues responsible for gas exchange in humans, including conditions of the upper respiratory tract, the trachea, the bronchi, bronchioles, alveoli, pleura and pleural cavity, as well as the nerves and muscles associated with breathing. Respiratory disease may be mild, such as the common cold, but range to life-threatening, such as pulmonary embolism and lung cancer.

Lung diseases place an enormous and growing burden on society, resulting in one-in-six (16.7%) deaths globally (World Health Organisation 2008), and are predicted to cause one-in-five deaths by 2030 (European Respiratory Society White Book 2012). Lung diseases often originate in the periphery of the lung where the flow of air is lowest, and therefore hard to detect using standard tools in the clinic today. Monitoring disease progression or treatment efficacy also relies on detecting subtle changes in lung function, and are therefore just as difficult to detect.

Lung Imaging Modalities

Current modalities for both diagnosis and lung disease monitoring can be categorised broadly into two categories; pulmonary function tests (PFTs) to measure functional aspects of the lung, and imaging techniques for organ structure visualisation.


Pulmonary Function Test (PFT)

Pulmonary function tests are a group of tests that measure how well the lungs are functioning. They measure how much air is taken in and released by the lungs and how well the lungs move gases, such as oxygen, from the atmosphere into the body’s circulation.

Spirometry is a common functional test of the lung, measuring the volume and also the flow speed of air that can be inhaled and exhaled through sustained deep breaths into the spirometer device. Plotted graphs, called spirograms, of volume and flow are output and used to assess conditions of the lung.

Although PFTs are not an imaging technique, and therefore have no radiation dose associated with their use, they are global measures of the lung, and do not pinpoint where functional deficits are present. They also cannot measure for compensation of different areas of lung, returning regular results. A significant drop in overall lung function must be present to be seen.

  • Dose: none
  • Resolution: none, global measures
  • Use: functional


Chest X-ray

Projection radiography, commonly called X-ray, is a widely utilised medical imaging method to examine pathological changes in the lungs. A beam of X-rays is projected towards the body. According to the different composition and densities of the bodily materials along its path, the X-rays are absorbed at different rates. The X-rays are captured on a detector plate behind the patient showing a 2-dimensional representation of the structures that form a superimposed image.

Plain chest X-rays lack the sensitivity required to provide intricate detail of soft tissue structures and therefore are poor at detecting early stages of lung disease.

  • Dose: low radiation
  • Resolution: low resolution
  • Use: structural


Computed Tomography (CT)

X-ray computed tomography (CT) or computed axial tomography (CAT scan) uses tomography of X-rays to construct a 3-dimensional image of structures inside the body. Tomography involves taking a succession of 2-dimensional images of the same object, taken around a single axis of rotation. Once complete, the large volume of data can be manipulated in various planes or created into a volumetric representation, of much higher sensitivity than plain X-ray.

CT use has increased dramatically in the last two decades, however large radiation doses are received by the patients which limits the frequency with which it can be used. Additionally, the best quality chest scans require patient sedation, especially of young patients.

  • Dose: high radiation
  • Resolution: high resolution
  • Use: structural


Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) uses the property of nuclear magnetic resonance (NMR) to image the nuclei of atoms inside of the body to produce detailed internal structures. An MRI machine uses a powerful magnetic field to align the magnetization of some atoms in the body. Radio frequency fields are then used to systematically alter the alignment. The nuclei rotate in accordance, producing a detectable rotating magnetic field picked up by the scanner that is then used to construct images of the body.

In contract to X-rays and CT, MRI provides contrast between different soft tissues, making it suitable for imaging the brain, muscles, the heart and cancers, however MRI is widely regarded as lacking sufficient resolution to image the lung. Research is currently being conducted to improve the sensitivity, but is currently not available.

  • Dose: none
  • Resolution: low to moderate resolution
  • Use: structural



Ultrasound (pressure waves with a frequency more than 20kHz) is typically used to either supply a focused energy source or to penetrate a medium in order to investigate the properties of that medium. The reflection signature can reveal details about the inner structure of the medium. It has been widely used in clinic over the past half century due to its portability and relatively low cost, especially in comparison with CT and MRI. It is also a safer alternative as no radiation dosage is administered, but simply lacks the resolution required for visualising lung disease.

  • Dose: none
  • Resolution: very low
  • Use: functional and structural


Positron Emission Tomography (PET)

A PET scan detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide, a glucose-analogue tracer, which is introduced into the body. Dependent on regions of glucose uptake within the body, three-dimensional images of tracer concentration are reconstructed with computer analysis. This imaging modality is relatively new for use with the lungs, but is potentially suitable for certain types of lung function investigation where inflammation causes greater glucose uptake.

Our 4D lung imaging technology



Rather than looking to the fine detail of the lungs’ shape (the approach of the last 100 years), our 4D lung imaging technology looks at the way the lung functions by targeting patterns of motion in the lung. This innovative imaging technology precisely captures a breathing lung, without the use of contrast agents or dangerous levels of radiation. This technology allows patients and clinicians to safely and effectively measure and image airflow in and out of each section of the lung for the first time.


Our 4D lung imaging technology takes a unique approach to imaging lung function. X-ray images are acquired simultaneously from different directions on existing hospital X-ray imaging systems. Using image-processing methods adapted from aerospace engineering, the movement of the lung tissue from each view is collectively tracked. Our unique, proven algorithms combine this information to reconstruct the flow of air throughout all airways of the lung. Since our technology uses images from a very limited number of different angles (compared to many hundreds of different angles in a full CT scan), the radiation dose is dramatically lower than CT. Furthermore, the limited number of angles means that scans are captured quickly: a breath is scanned in the time required to take that breath – just a few seconds.


Our technology fills critical and unmet needs in lung imaging. This technology has clear applications in both a human clinical setting for medical imaging and analysis as well in contract research for drug development. The technology is proven in small animal models and clinical study applications are underway. We, along with many collaborators from various research groups have already used the technology to investigate conditions including cystic fibrosis and asthma, as well as in developing infant resuscitation techniques. In addition to these early stage studies, this technology has the potential to assist in the development of new respiratory drug treatments and refine or accelerate the progress of respiratory drugs already under development.

Worldwide Demand

More than $25 billion is spent each year on respiratory diagnostic procedures globally, but today’s respiratory patients are often treated with medical equipment and technology created in the 1970s. 4DMedical image analysis technology has enormous scope for life-changing advancement, enhancing diagnostic performance and accuracy across the following three market segments:

Respiratory Disease Analysis and Management

4DMedical’s patented technology revolutionises the respiratory disease care cycle by delivering high-resolution, quantitative functional information, from low-dose and non-invasive scanning. 4DxV provides unprecedented levels of detail for the analysis and management of debilitating respiratory diseases ranging from asthma to lung cancer. It is a true breakthrough for providing invaluable information to improve patient outcomes through better treatment planning and monitoring of treatment effectiveness.

Technology Variants

Further applications of the 4DMedical technology include Neonatal and Pediatrics plus Pharmaceutical Research as described in further detail below.

Neonatal and Pediatrics

4DMedical is developing groundbreaking imaging technology for doctors treating critically ill children. Unlike current technology, which uses scaled-down adult systems to diagnose and treat infants with conditions of the lung, 4DMedical aims to develop systems specifically for use in both neonatal and broader pediatric settings. 4DMedical technology is non-invasive and does not require patients to remain still during imaging. These are clear benefits for all patients and particularly for infants and children who cannot describe symptoms and may be anxious or distressed.

Pharmaceutical Research

4DMedical has the potential to fast track promising drug discoveries, determine effectiveness early and enable clear evaluation of performance in a pre-clinical space. 4DMedical provides the advantage of non-invasive, in vivo imaging techniques able to provide more accurate and sensitive assessment via fewer scans as compared to existing technologies, reducing the overall cost of R&D.

Further Opportunities

Dedicated Hardware

Respiratory function tests have been the staple of the respiratory physician for decades. That is set to change with the introduction of technology that has the capability to image a patient’s lung function directly.

Dedicated hardware development will offer advantages over current equipment, including increased temporal resolution, reduction in X-ray dose and increased throughput leading to greater efficiency.


The systematic uptake and use of conventional images in data mining has been hampered due to large data volumes and the need for highly qualified professionals to make assessments of the images.

4DxV data (small, digital and quantitative) represents a giant leap forward, enabling computer-based data mining techniques. Data that can be kept and used for further analysis and data mining has the advantage of providing value many times throughout its life cycle.